A representation of chemical transformations by labeled graphs

Gary Chartrand ${ }^{\star}$
Western Michigan University, Kalamazoo, MI 49008, USA
Héctor Hevia
Grand Valley State University, Allendale, MI 49401, USA
and Universidad Católica de Valparaíso, Chile
and
Mark A. Johnson
The Upjohn Company, Kalamazoo, MI 49001, USA

Dedicated to Professor Frank Harary
on the occasion of his 70th birthday

Abstract

A transitional labeling of a graph G is an assignment of one of the elements of the set $(1,-1,0)$ to each vertex and edge of G so that each edge labeled 0 is incident only with vertices labeled 0 , and no edge labeled 1 (respectively, -1) is incident with a vertex labeled -1 (respectively, 1). Chemical transformations can be represented by graphs possessing a transitional labeling. The positive (negative) graph of a transitional labeling t of a graph G is the subgraph of G consisting of the nonnegative (nonpositive) elements of G. The linking graph of t is the subgraph consisting of the zero elements of G. A maximum common subgraph of two given graphs G_{1} and G_{2} is a graph F isomorphic to a common subgraph of G_{1} and G_{2} such that the sum of the number of vertices and number of edges of F is maximum. A transitional labeling t of a graph G is a transform if there exists an extension t^{\prime} of t to a supergraph G^{\prime} of G such that the linking graph of t^{\prime} is a maximum common subgraph of the positive and negative graphs of t^{\prime}. Transforms are used to model chemical reaction pathways. Transforms and related concepts are studied in this paper. A characterization of transforms is also given.

1. Introduction

Graph-theoretic models of transformation pathways were introduced in ref. [1], and chemical examples of these models were developed in ref. [2]. It is the goal of this paper to develop these models from another, purely graph-theoretic point of view and to present some theoretical results which are inherited by all chemical interpretations of these general models.

[^0]These formal models require a rigorously defined concept of a transformation that distinguishes those structural features that are changed in the transformation from those that are not. Here, this concept is called a transitional labeling. The type of transitional labeling in which we will be most interested is the transform. A major goal is to present a characterization of transforms, which we will do in section 5. A concept that is comparable to the transitional labeling can be found in Kvasnicka and Pospichal's graph-theoretic formulation of the Dugundji-Ugi theory of organic reactions (ref. [3] and references cited therein). Whereas our definition associates the labels $-1,0,1$ with the vertices and the edges of a graph, theirs associates the labels $0, \pm 1, \pm 2, \ldots$ with solely the edges of a graph. Because of their interest in stoichiometric reactions, they require that the edge labels sum to zero. We currently place no stoichiometric constraints on our labels. As a consequence, our formalism extends to non-stoichiometric representations of reactions as are found in metabolic studies, as well as to representations of structural transformations in which the edges of a graph need not correspond to chemical bonds.

2. Transitional labelings of graphs

A labeling of a graph G is an assignment of an element of a given set to each vertex and edge of G. A labeling t of G with elements of the set $\{1,-1,0\}$ is called a transitional labeling if
(1) each edge labeled 0 is incident only with vertices labeled 0 ,
(2) no edge labeled 1 is incident with a vertex labeled -1 , and
(3) no edge labeled -1 is incident with a vertex labeled 1.

An edge or vertex is called positive, negative, or zero, according to whether it is labeled $1,-1$, or 0 , respectively. The subgraph P of G consisting of the positive and zero elements of G is called the positive graph of t, while the subgraph N consisting of the negative and zero elements is the negative graph of t. The subgraph L of G consisting of its zero elements is called the linking graph of t. Not all of these subgraphs may exist for a transitional labeling of a graph. Figure 1 shows a transitional labeling of a graph H, together with its positive, negative, and linking graphs. The positive edges of a graph are represented by solid lines, the negative edges by dashed lines, and the zero edges by dotted lines. For graph theory terminology not defined here, we follow Chartrand and Lesniak [4].

For a connected graph G and a transitional labeling t of G, a vertex v of G is called a pole (with respect to t) is v is not labeled 0 . If v is labeled 1 , it is a positive pole, while if v is labeled -1 , it is a negative pole. For example, the vertex g of the graph H of fig. 1 is a positive pole, and d is a negative pole.

If G has both positive and negative poles, then t is a polarization; otherwise, t is a quasipolarization. The transitional labeling t of the graph H of fig. 1 is therefore a polarization. Since a positive pole cannot be adjacent to a negative pole, every transitional labeling of a nontrivial complete graph is a quasipolarization.

Fig. 1. A transitional labeling of a graph H and its resulting positive, negative, and linking graphs.

Transitional labelings were introduced by Johnson [1] for the purpose of representing chemical transformations. For example, common salt (NaCl) may be formed by reacting metallic sodium directly with hydrochloric acid. This reaction has the chemical equation

$$
\begin{equation*}
2 \mathrm{Na}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} . \tag{1}
\end{equation*}
$$

The (labeled) chemical graph N that represents the two sodium atoms and two molecules of hydrochloric acid is shown in fig. 2 , as is the chemical graph P that represents two molecules of sodium chloride and one molecule of H_{2}. We may think of N as representing chemical compounds prior to the transformation (1), and P the resulting compounds following this transformation.

Fig. 2. A graphical representation of the compounds in the chemical transformation (1).

The chemical transformations given by (1) may be interpreted as a process of deletion and addition of certain vertices and edges in the graph N to produce the graph P. Consider the common supergraph G of N and P shown in fig. 3. We now label the vertices and edges

Fig. 3. A graphical representation of the chemical transformation (1).
(i) of G that are common elements of N and P by 0 ,
(ii) of N that are deleted from N to produce P by -1 , and
(iii) of P that are added to N to produce P by 1 .

The labeled graph G so obtained is a graph-theoretic representation of the chemical transformation given by (1), which is also shown in fig. 3.

As a second exmple, the hydrocarbon ethylene $\mathrm{C}_{2} \mathrm{H}_{4}$ is a product of the breakdown of larger hydrocarbon molecules during petroleum refining. For example, ethylene and water react under suitable chemical conditions, producing (diethyl)ether $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}\right)$. This reaction can be represented by the chemical equation

$$
\begin{equation*}
2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5} . \tag{2}
\end{equation*}
$$

Depending on the amount of water that reacts with the ethylene, ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ may be formed, rather than ether. The reaction with water can take place in two stages, namely, (2) and

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} . \tag{3}
\end{equation*}
$$

These two consecutive chemical transformations can be represented by a "transformation digraph" in which the vertices represent chemical compounds and the arcs represent chemical transformations involving these compounds. The first transformation digraphs were proposed by Balaban et al. [5] in 1966. For example, if $\mathrm{C}_{1} \rightarrow \mathrm{C}_{2}$ and $\mathrm{C}_{2} \rightarrow \mathrm{C}_{3}$ symbolize the chemical equations (2) and (3), then the transformation digraph of fig. 4 represents the chemical process that takes place when ethylene and water

Fig. 4. A chemical transformation digraph.
react to produce ethanol. In fig. $4, G_{1}, G_{2}$, and G_{3} represent the chemical graphs of the compounds C_{1}, C_{2}, and C_{3}, respectively. Systems of chemical compounds and transformations such as the one described by (2) and (3) are called chemical reaction pathways. To simplify the modeling of chemical reaction pathways, we may assume that chemical compounds are represented by unlabeled graphs. Thus, the vertices of the corresponding transformation digraph can be labeled by unlabeled graphs.

We return to the chemical transformation described by (2). Figure 5 shows a (labeled) chemical graph N that represents two molecules of ethylene and one molecule of water, and the chemical graph P that represents one molecule of ether. Although the bonds between carbon atoms are different in ethylene and ether, we represent them in the same way for simplification.

H

H

Fig. 5. A graphical representation of the compounds in the chemical transformation (2).

Fig. 6. A graphical representation of the chemical transformation (2).

In order to represent the chemical transformation (2), we consider the common (labeled) supergraph G of N and P shown in fig. 6. Proceeding as before, we obtain
the labeling of G (also shown in fig. 6), which is then a representation of the chemical transformation (2).

In certain representations of a chemical transformation (called nonstoichiometric transformations), some atoms on one side of the transformation may not be explicitly represented on the other side of the equation. Consequently, under the assumption that atoms from molecules of water do not participate in the atomic balance of the corresponding chemical equation, we obtain a different model for this chemical reaction between ethylene and water. In this case, we have

$$
\begin{equation*}
2 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5} \tag{4}
\end{equation*}
$$

Here, we obtain the chemical graphs N^{\prime} and P^{\prime} of fig. 7. With the aid of the common supergraph G^{\prime} of N^{\prime} and P^{\prime}, we obtain the labeling of G^{\prime} shown in fig. 6. This labeling may be considered as a representation of the chemical reaction (4).

Fig. 7. A common supergraph of two chemical graphs.
It should now be clear that if G is a labeled graph representing a certain chemical transformation as described above, then edges labeled 0 are incident only with vertices labeled 0 . Moreover, since additional edges cannot be incident with
deleted edges, and deleted edges cannot be incident with added vertices, we see that no edge labeled -1 is incident with a vertex labeled 1 , and no edge labeled 1 is incdent with a vertex labeled - 1 . Therefore, the labeling of G is, in fact, a transitional labeling. Denote this labeling by t.

We note that the subgraph of G consisting of the elements labeled -1 or 0 and the subgraph consisting of the elements labeled 1 or 0 are well defined. These subgraphs are, respectively, the chemical graphs of the involved compounds prior to and following the chemical transformation under consideration. Furthermore, these are, respectively, the negative graph N and the positive graph P of t.

Hevia $[6,7]$ has studied theoretical properties of transitional labelings. In particular, he has investigated transitional labelings of complete graphs and trees. Unless stated otherwise, we shall assume that all transitional labelings under discussion are nonconstant. There is no loss of generality with this assumption since transitional labelings were introduced to model chemical transformations, and a constant transitional labeling indicates that no chemical change has occurred.

Let G_{1} and G_{2} be two graphs with transitional labelings t_{1} and t_{2}, respectively. We say that t_{1} is isomorphic to t_{2}, written $t_{1} \cong t_{2}$, if there exists a graph isomorphism ϕ from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that the diagram of fig. 8 is commutative, that is,

$$
t_{1}=t_{2} \circ \bar{\phi}
$$

where $\bar{\phi}: V\left(G_{1}\right) \cup E\left(G_{1}\right) \rightarrow V\left(G_{2}\right) \cup E\left(G_{2}\right)$ is an extension of ϕ for which $\bar{\phi}(u v)$ $=\phi u \phi v$, for each edge $u v$ of G_{1}. Since ϕ is an isomorphism, it follows that $\phi u \phi v$ is an edge of G_{2} whenever $u v$ is an edge of G_{1}. This shows that the extension $\bar{\phi}$ of ϕ always exists.

$$
\{1,0,-1)
$$

Fig. 8. The commutative diagram for isomorphic transitional labelings.

Figure 9 shows two graphs G_{1} and G_{2}, with corresponding transitional labelings t_{1} and t_{2}. If $\phi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ is the isomorphism defined by $\phi\left(u_{i}\right)=v_{i}(i=1,2,3,4)$, then $t_{1}=t_{2} \circ \bar{\phi}$ and, hence, $t_{1} \cong t_{2}$. It can be shown that the relation "is isomorphic to" is an equivalence relation of any set of transitional labelings.

Fig. 9. Isomorphic transitional labelings.

Let t be a nontrivial transitional labeling of a graph G. The core t_{c} of t is the restriction of t to the subgraph obtained from G by deleting all zero edges together with all zero vertices that are incident only with zero edges. Equivalently, the core t_{c} of G is the restriction of t to the subgraph H of G induced by the nonzero edges of G and the isolated vertices of G that are poles. Figure 10 shows a transitional labeling t of a graph together with its core t_{c}.

Fig. 10. The core of a transitional labeling.

At this point, we interrupt our discussion briefly to recall a few ideas from the mathematical theory of relations. A relation \sim on a set S is a collection of elements (ordered pairs) of the product set $S \times S$. For any $x, y \in S$, it is customary to write $x \sim y$ if and only if (x, y) belongs to the relation \sim and we say x is related to y by \sim. The relation is called (1) reflexive if $x \sim x$ for all $x \in S$, (2) symmetric if whenever $x \sim y$, then $y \sim x$, (3) antisymmetric if whenever $x \sim y$ and $y \sim x$, then $x=y$, and (4) transitive if whenever $x \sim y$ and $y \sim z$, then $x \sim z$. A relation that satisfies the reflexive, symmetric, and transitive properties is referred to as an equivalence relation.

If a relation \sim on a set S is reflexive, antisymmetric, and transitive, then it is called a partial ordering on S, and we say that \sim partially orders S. It is customary to denote a partial ordering by \leq. A set S together with a partial ordering on S is called a partially ordered set or, more commonly, a poset. With each poset, there is associated a diagram called a Hasse diagram. For each element of the poset, we associate a point. If x and y belong to the poset and $x \leq y$, then we draw the point

$\mathrm{O}-\mathrm{O}$

Fig. 11. The Hasse diagram of a set of transitional labelings.
corresponding to x below the point corresponding to y. Furthermore, if $x \leq y$ and there is no element z of the poset distinct from x and y such that $x \leq z \leq y$, then we join x and y by a line segment.

We now return to our primary discussion. Let t and t^{\prime} be transitional labelings of graphs G and G^{\prime}, respectively. They are said to have the same core if $t_{\mathrm{c}} \cong t_{\mathrm{c}}^{\prime}$. (This relation is an equivalence relation on any set of transitional labelings.) Let t and t^{\prime} be transitional labelings having the same core. Then we write $t \leq t^{\prime}$ if t is isomorphic to a restriction of t^{\prime}. Thus, $t \leq t^{\prime}$ if and only if a transitional labeling isomorphic to t^{\prime} can be constructed from t by adding appropriate zero elements to G. Note that, by definition, if $t \leq t^{\prime}$, then $t_{\mathrm{c}} \cong t_{\mathrm{c}}^{\prime}$. If $t \leq t^{\prime}$, then t is called a restriction of t^{\prime}, and t^{\prime} is an extension of t. If $t \leq t^{\prime}$ and $t \neq t^{\prime}$, then t^{\prime} is a proper extension of t.

The relation \leq partially orders any set \mathcal{T} of transitional labelings. Certainly, \leq is reflexive and transitive. To see that \leq is also antisymmetric, suppose that t
and t^{\prime} are transitional labelings of graphs G and G^{\prime}, respectively, such that $t \leq t^{\prime}$ and $t^{\prime} \leq t$. Then t and t^{\prime} must have an equal number of zero elements and, consequently, $t \cong t^{\prime}$.

For example, let \mathcal{T} be the set of transitional labelings $t_{1}, t_{2}, \ldots, t_{9}$ shown in fig. 11. These transitional labelings have isomorphic cores. Thus, (\mathcal{T}, \leq) is a poset and may be represented by the Hasse diagram of fig. 11. The transitional labelings shown in fig. 11 will be referred to often throughout the remainder of this paper.

3. Transforms

In this section, we describe a secial kind of transitional labeling called a transform, in which we will be interested throughout the remainder of the paper. It is necessary to define a few additional terms before introducing this concept.

We define the cardinality $|G|$ of a graph G as the sum of its order and size, that is,

$$
|G|=|V(G)|+|E(G)|
$$

A graph F is called a maximum common subgraph of graphs G_{1} and G_{2} if F is a graph of maximum cardinality that is isomorphic to a common subgraph of G_{1} and G_{2}. A graph G is a minimum common supergraph of G_{1} and G_{2} if G is a graph of minimum cardinality that is isomorphic to a common supergraph of G_{1} and G_{2}. These two concepts were introduced by Johnson in ref. [8]. For the graphs G_{1} and G_{2} of fig. $12,\left|G_{1}\right|=10$ and $\left|G_{2}\right|=9$. The graph F is the unique maximum common subgraph of G_{1} and G_{2}, and G is a minimum common supergraph (though not unique) of G_{1} and G_{2}.

Fig. 12. A maximum common subgraph and minimum common supergraph of two graphs.

For subgraphs H_{1} and H_{2} of a (labeled) graph G, we define the union $H_{1} \cup H_{2}$ as that subgraph of G with vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge $E\left(H_{1}\right) \cup E\left(H_{2}\right)$. The intersection $H_{1} \cap H_{2}$ of H_{1} and H_{2} is defined analogously.

Fig. 13. The construction of a transitional labeling with prescribed negative and positive graphs.

Let G_{1} and G_{2} be two given graphs. In ref. [1], Johnson shows how to construct a graph G and a transitional labeling t of G such that the negative graph of t is isomorphic to G_{1} and the positive graph of t is isomorphic to G_{2}. We briefly describe this procedure. Let G^{\prime} be a common supergraph of G_{1} and G_{2}. Let H_{1} and H_{2} be two subgraphs of G^{\prime} that are isomorphic to G_{1} and G_{2}, respectively. Define a transitional labeling t of $G=H_{1} \cup H_{2}$ by

$$
t(x)=\left\{\begin{align*}
-1 & \text { if } x \text { is an element of } H_{1} \text { but not of } H_{2} \tag{5}\\
1 & \text { if } x \text { is an element of } H_{2} \text { but not of } H_{1} \\
0 & \text { if } x \text { is a common element of } H_{1} \text { and } H_{2}
\end{align*}\right.
$$

We illustrate this procedure. Let G_{1} and G_{2} be the two graphs shown in fig. 13. Choose the common supergraph G^{\prime} of G_{1} and G_{2} and the subgraphs H_{1} and H_{2} of G^{\prime} of fig. 13. We then obtain the transitional leveling t of $G=H_{1} \cup H_{2}$ shown in fig. 13.

For given graphs G_{1} and G_{2}, let G be a minimum common supergraph of G_{1} and G_{2} and let H_{i} denote a subgraph of G isomorphic to $G_{i}, i=1,2$. Then

$$
|G|=\left|H_{1}\right|+\left|H_{2}\right|-|F|
$$

and so

$$
\begin{equation*}
|G|=\left|G_{1}\right|+\left|G_{2}\right|-|F| \tag{6}
\end{equation*}
$$

where $F=H_{1} \cap H_{2}$. Thus, F is a common subgraph of G_{1} and G_{2}. From eq. (6), it follows that F is a maximum common subgraph of G_{1} and G_{2}. Therefore, in constructing the transitional labeling t described in (5), if we choose G^{\prime} as a minimum common supergraph of G_{1} and G_{2}, then the linking graph of t is a maximum common subgraph of G_{1} and G_{2}. Figure 14 shows a transitional labeling s whose negative and positive graphs are isomorphic to the graphs G_{1} and G_{2} of fig. 13, respectively, and where the linking graph of s is a maximum common subgraph of G_{1} and G_{2}.

Fig. 14. The construction of a transitional labeling with prescribed negative and positive graphs and whose linking graph is a maximum common subgraph.

A transitional labeling t is said to be of maximum linkage if its linking graph is a maximum common subgraph of the positive and negative graphs of t. Thus, the transitional labeling shown in fig. 14 is of maximum linkage.

A characteristic of transitional labelings of maximum linkage is now established.

THEOREM 1

If t is a transitional labeling of maximum linkage of a graph G, then t is a quasipolarization of G.

Proof
Let N and P be the negative and positive graphs of t, respectively. Since t is of maximum linkage, G is a minimum common supergraph of N and P. Suppose, to the contrary, that t is a polarization. Let u and v be poles with distinct signs. Let H be the graph obtained by identifying u and v. Then H is a common supergraph of N and P whose cardinality is less than the cardinality of G, contradicting the minimality of G.

The converse of theorem 1 is not true in general, as is illustrated by the quasipolarization shown in fig. 15.

Fig. 15. A quasipolarization that is not a transitional labeling of maximum linkage.

A transitional labeling t is called a transform if there exists an extension t^{\prime} of t that is of maximum linkage, that is, the linking graph t^{\prime} is a maximum common subgraph of the negative and positive graphs of t^{\prime}. Thus, every transitional labeling of maximum linkage is a transform. Transforms were introduced by Johnson [1] for the purpose of modeling chemical reaction pathways.

We return to the example given in fig. 11 . Figure 16 shows the transitional labelings t_{1} and t_{3} of fig. 11, together with their corresponding negative and positive graphs. Since the linking graph of t_{3} is a maximum common subgraph of the negative graph N_{3} and positive graph P_{3} of t_{3}, it follows that t_{3} is of maximum linkage. The linking graph of t_{1} is not a maximum common subgraph of the negative graph N_{1} and the positive graph P_{1} of t_{1}, so t_{1} is not of maximum linkage. However, because t_{3} is of maximum linkage and $t_{1} \leq t_{3}$, it follows that t_{1} and, of course, t_{3} are transforms.

Now consider the transitional labeling t of the graph G shown in fig. 17, with linking graph L, negative graph N, and positive graph P. Observe that $L \cong K_{1}$ and $N \cong P \cong K_{2}$. Let s be an extension of t, with linking graph L^{*}, negative graph N^{*}, and positive graph P^{*}. Since s is obtained from t by adding zero edges and/or zero

Fig. 16. Transitional labelings that are transforms.

Fig. 17. A transitional labeling that is not a transform.
vertices to t, it follows that $N^{*} \cong P^{*}$ and L^{*} is a proper subgraph of N^{*} (equivalently P^{*}). Because $N^{*} \cong P^{*}$, the maximum common subgraph of N^{*} and P^{*} is also isomorphic to N^{*}. Hence, L^{*} is not a maximum common subgraph of N^{*} and P^{*}, so t is not a transform.

4. Actions, transform kits, and metadigraphs

Let t be a transform. An ordered pair (G_{1}, G_{2}) of (unlabeled) graphs is called an action of t if there exists an extension t^{\prime} of maximum linkage of t such that the negative graph of t^{\prime} is isomorphic to G_{1} and the positive graph of t^{\prime} is isomorphic to G_{2}. Equivalently, then, (N, P) is an action of t if t is of maximum linkage with negative graph N and positive graph P. For example, for the graphs N_{3} and P_{3} of fig. 16, the ordered pair $\left(N_{3}, P_{3}\right)$ is an action of the transforms t_{1} and t_{3}.

A metadigraph $M=(D, g)$ is a (possibly infinite) digraph D together with a labeling g of the vertices of D with unlabeled graphs such that if $u, v \in V(D), u \neq v$, then $g(u) \not \equiv g(v)$. Figure 18 shows a metadigraph M of order 3 whose vertices are labeled with the graphs G_{1}, G_{2}, and G_{3}. Two metadigraphs $M_{1}=\left(D_{1}, g_{1}\right)$ and M_{2} $=\left(D_{2}, g_{2}\right)$ are isomorphic if there exists an isomorphism $\phi: V\left(D_{1}\right) \rightarrow V\left(D_{2}\right)$ such that $g_{1}(u) \cong g_{2}(\phi(u))$ for all $u \in V\left(D_{1}\right)$.

A transform kit K is an ordered pair ($T_{\mathrm{g}}, T_{\mathrm{b}}$) of sets of transforms. The elements of T_{g} are called the generating transforms of K and the elements of T_{b} are referred to as blocking transforms of K. Let $K=\left(T_{\mathrm{g}}, T_{\mathrm{b}}\right)$ be a transform kit, and let $t \in T_{\mathrm{g}}$ and $t^{\prime} \in T_{\mathrm{b}}$. An action $\left(G_{1}, G_{2}\right)$ of t is said to be blocked by t^{\prime} if
(i) $\left(G_{1}, G_{2}\right)$ is an action of t^{\prime}, and
(ii) $t \leq t^{\prime}$, that is, t^{\prime} is an extension of t.

$G_{3}:$

M:

Fig. 18. A metadigraph.

We return to the transitional labelings shown in fig. 11. Consider the transform kit $K=\left(T_{\mathrm{g}}, T_{\mathrm{b}}\right)$, where $T_{\mathrm{g}}=\left\{t_{1}\right\}$ and $T_{\mathrm{b}}=\left\{t_{3}\right\}$. We have seen that $a_{1}=\left(N_{3}, P_{3}\right)$ is an action of t_{1} and t_{3}, where N_{3} and P_{3} are the graphs shown in fig. 16. Since $t_{1} \leq t_{3}$, the action a_{1} of t_{1} is blocked by t_{3}. Let N_{8} and P_{8} denote the negative and positive graphs of the transitional labeling t_{8} of fig. 11 (see fig. 19). We claim that $a_{2}=\left(N_{8}, P_{8}\right)$

Fig. 19. An action (N_{8}, P_{8}) of t_{1} is not blocked by t_{3}.
is an action of t_{1} that is not blocked by t_{3}. In order to see this, we assume, to the contrary, that a_{2} is blocked by t_{3}. Then a_{2} is an action of t_{3}. So, there exists some extension of t_{3} whose negative graph N is isomorphic to N_{8}. Since the negative graph N_{3} of t_{3} is a subgraph of N, the graph N_{8} contains a triangle, which produces a contradiction. Let $T_{\mathrm{b}}^{\prime}=\left\{t_{2}\right\}$. Then for the transform kit $K^{\prime}=\left(T_{\mathrm{g}}, T_{\mathrm{b}}^{\prime}\right)$, the actions a_{1} and a_{2} of t_{1} are blocked by the transform t_{2}.

By an action of a transform kit K, we mean an action of the generating transforms of K that is not blocked by any blocking transform of K. Thus, for the transform kit $K=\left(T_{\mathrm{g}}, T_{\mathrm{b}}\right)$ described above in which $T_{\mathrm{g}}=\left\{t_{1}\right\}$ and $T_{\mathrm{b}}=\left\{t_{3}\right\}, a_{2}=\left(N_{8}, P_{8}\right)$ is an action of K.

Let Δ be a nonempty set of unlabeled graphs, and let K be a transform kit. With Δ and K, we can associate a metadigraph $D(\Delta, K)$. Each vertex of $D(\Delta, K)$ corresponds to an element (unlabeled graph) of Δ. Let u and v be distinct vertices of $D(\Delta, K)$ with corresponding graphs G_{1} and G_{2}, respectively. Then (u, v) is an arc of $D(\Delta, K)$ if and only if $\left(G_{1}, G_{2}\right)$ is an action of K.

$G_{3}:$

0
$K=([r, s\},\{t\})$

0

$\Delta=\left\{G_{1}, G_{2}, G_{3}\right\}$
$D(\Delta, K):$

Fig. 20. Actions, a transform kit, and a metadigraph.

As an example, let $\Delta=\left\{G_{1}, G_{2}, G_{3}\right\}$ and $K=(\{r, t\},\{s\})$, where the graphs G_{1}, G_{2}, G_{3} and transitional labelings r, s, t are shown in fig. 20. The extension r^{\prime} and r shown in fig. 20 is of maximum linkage, and the negative and positive graphs of r^{\prime} are isomorphic to G_{1} and G_{2}, respectively. Therefore, $\left(G_{1}, G_{2}\right)$ is an action of r that cannot be blocked by t since r and t have distinct cores. Then $\left(G_{1}, G_{2}\right)$ is an
action of K. On the other hand, if $\left(G_{1}, G_{2}\right)$ is an action of a certain transform u of a graph G, then G must have a positive pole. This implies that such a transform u cannot be an extension of r or of s. Therefore, (G_{1}, G_{2}) is neither an action of r nor of s and, consequently, is not an action of K. That $\left(G_{2}, G_{3}\right)$ and $\left(G_{3}, G_{2}\right)$ are actions of s can be seen by considering the extension s^{\prime} and $s^{\prime \prime}$ (of maximum linkage), respectively. In particular, since $t=s^{\prime \prime}$ is a blocking transform of K, the action (G_{3}, G_{2}) is blocked by t. Thus, $\left(G_{3}, G_{2}\right)$ is not an action of K. The action (G_{2}, G_{3}) of s cannot be blocked by t since the negative graph N of any extension of t contains a 4-cycle and so $G_{2} \not \equiv N$. Therefore, $\left(G_{2}, G_{3}\right)$ is an action of K.

The graphs G_{1} and G_{3} have a unique maximum common subgraph, namely, P_{4}. So, if t^{*} is a transitional labeling of maximum linkage whose negative and positive graphs are isomorphic to G_{1} and G_{3}, or to G_{3} and G_{1}, respectively, then t^{*} has a core distinct from that of r and s. From this, it follows that (G_{1}, G_{3}) and (G_{3}, G_{1}) are not actions of r and s and, consequently, are not actions of K. The remaining metadigraph is shown in fig. 20.

Let M be a metadigraph. If there exists a set Δ of unlabeled graphs and a transform kit K such that M is isomorphic to the metadigraph $D(\Delta, K)$, then (Δ, K) is said to be a specification for M.

Recall that a transitional labeling t of maximum linkage is a transform. Also, if N and P are the negative and positive graphs of t, then (N, P) is an action of t. The next result concerns this situation.

THEOREM 2

Let t be a transitional labeling of maximum linkage in a graph G, and let N and P denote the negative and positive graphs of t. Then there exists no transform t^{\prime} that is a proper extension of t such that (N, P) is an action of t^{\prime}.

Proof

Suppose, to the contrary, that there exists a transform t^{\prime} that is a proper extension of t such that (N, P) is an action of t^{\prime}. Since (N, P) is an action of t^{\prime}, there exists a transitional labeling of $t^{\prime \prime}$ of some graph $G^{\prime \prime}$ that is of maximum linkage and whose negative and positive graphs are isomorphic to N and P. Thus, G and $G^{\prime \prime}$ are minimum common supergraphs of N and P, and, consequently, $|G|=\left|G^{\prime \prime}\right|$. However, $t^{\prime \prime}$ is a proper extension of t so that $|G|<\left|G^{\prime \prime}\right|$, producing a contradiction.

An immediate consequence now follows.

COROLLARY 3

If $K=\left(T_{\mathrm{g}}, T_{\mathrm{b}}\right)$ is a transform kit and $t \in T_{\mathrm{g}} \backslash T_{\mathrm{b}}$ is of maximum linkage, then (N, P) is an action of K, where N and P are the negative and positive graphs of t.

Proof

Since $t \in T_{\mathrm{g}} \backslash T_{\mathrm{b}}$, any extension t^{\prime} of t in T_{b} is a proper extension of t. By theorem $2,(N, P)$ is not an action of t^{\prime} for any $t^{\prime} \in T_{\mathrm{b}}$. Therefore, (N, P) is an action of K.

Let G_{1} and G_{2} be two given graphs. By $\mathcal{T}\left(G_{1}, G_{2}\right)$, we mean the set of all transitional labelings of maximum linkage whose negative and positive graphs are isomorphic to G_{1} and G_{2}, respectively. For example, if G_{1} and G_{2} are the graphs of fig. 20 (also shown in fig. 21), then $T\left(G_{1}, G_{2}\right)=\left\{t_{1}, t_{2}\right\}$, where t_{1} and t_{2} are the transitional labelings shown in fig. 21.

Fig. 21. The transitional labelings of maximum linkage whose negative and positive graphs are isomorphic to G_{1} and G_{2}.

THEOREM 4

Let $K=\left(T_{\mathrm{g}}, T_{\mathrm{b}}\right)$ be a transform kit. If G_{1} and G_{2} are graphs for which $\mathcal{T}\left(G_{1}, G_{2}\right) \subseteq T_{\mathrm{b}}$, then $\left(G_{1}, G_{2}\right)$ is not an action of K.

Proof

Suppose that $\left(G_{1}, G_{2}\right)$ is an action of some transform $t \in T_{\mathrm{g}}$. Then there exists a transitional labeling t^{\prime} of maximum linkage such that $t \leq t^{\prime}$ and the negative and positive graphs of t^{\prime} are isomorphic to G_{1} and G_{2}. Since (G_{1}, G_{2}) is an action of t^{\prime} and $t^{\prime} \in T\left(G_{1}, G_{2}\right) \subseteq T_{\mathrm{b}}$, the action (G_{1}, G_{2}) is blocked by t^{\prime}. Thus, (G_{1}, G_{2}) is not an action of K.

We are now in a position to establish the existence of a specification (Δ, K) for any given metadigraph M. This result is due to Johnson [1], but we include a proof for completeness.

THEOREM 5 (Johnson)

For any metadigraph M, there exists a specification (Δ, K) such that M is isomorphic to $D(\Delta, K)$.

Proof

Let $M=(D, g)$ be a metadigraph. Let $\Delta=\{g(v) \mid v \in V(D)\}$. For each arc $e=(u, v)$ of D, construct a transitional labeling t_{e} of maximum linkage whose negative and positive graphs are isomorphic to $g(u)$ and $g(v)$, respectively. Let

$$
T_{\mathrm{g}}=\left\{t_{e} \mid e \in E(D)\right\}
$$

and $T_{\mathrm{b}}=\bar{T}_{\mathrm{g}}$, where \bar{T}_{g} is the complement of T_{g} with respect to the set of all transforms. Let $K=\left(T_{\mathrm{g}}, T_{\mathrm{b}}\right)$. We show that (Δ, K) is a specification for M.

Suppose that $e=(u, v)$ is an arc of D. Then the transform t_{e} is an element of $T_{\mathrm{g}} \backslash T_{\mathrm{b}}$. By corollary 3, $(g(u), g(v))$ is an action of K, and so the vertex of $D(\Delta, K)$ labeled $g(u)$ is adjacent to the vertex labeled $g(v)$.

Next, suppose that $e=(u, v)$ is not an arc of D. In this case, $\mathcal{T}(g(u), g(v)) \subseteq T_{\mathrm{b}}$. By theorem 4, $(g(u), g(v))$ is not an action of K, and so the vertex labeled $g(u)$ in $D(\Delta, K)$ is not adjacent to the vertex labeled $g(v)$.

Therefore, the restriction $g^{\prime}: V(D) \rightarrow \Delta$ of g is an isomorphism of M and $D(\Delta, K)$.

5. A characterization of transforms

Transforms have played a central role throughout this paper. In this section, we present a characterization of transforms.

Let G_{1} and G_{2} be graphs with $\left|V\left(G_{1}\right)\right| \geq\left|V\left(G_{2}\right)\right|=z$, and let $f: V\left(G_{2}\right) \rightarrow V\left(G_{1}\right)$ be a one-to-one function. Suppose that $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{z}\right\}$ and $f\left(v_{i}\right)=u_{i}$ for $i=1,2, \ldots, z$. With f we can associate a quasipolarization for a graph G, as we now describe. We construct a common supergraph G of G_{1} and G_{2} by identifying u_{i} and v_{i} for each $i(1 \leq i \leq z)$. Let H_{1} and H_{2} denote subgraphs of G isomorphic to G_{1} and G_{2}, respectively. Then $G=H_{1} \cup H_{2}$. Define the transitional labeling t of G as we did in (5), namely,

$$
t(x)=\left\{\begin{aligned}
-1 & \text { if } x \text { is an element of } H_{1} \text { but not of } H_{2} \\
1 & \text { if } x \text { is an element of } H_{2} \text { but not of } H_{1}, \\
0 & \text { if } x \text { is a common element of } H_{1} \text { and } H_{2}
\end{aligned}\right.
$$

Indeed, every quasipolarization with negative graph isomorphic to G_{1} and positive graph isomorphic to G_{2} can be thought of as being associated with a one-to-one function from $V\left(G_{2}\right)$ to $V\left(G_{1}\right)$. We employ these ideas in the proof of the next result.

THEOREM 6

A transitional labeling t of a graph G is a transform if and only if t is a quasipolarization.

Proof

Suppose, first, that t is a transform. Then there exists an extension t^{\prime} of t that is of maximum linkage. By theorem $1, t^{\prime}$ is a quasipolarization. Since $t \leq t^{\prime}$, the transitional labelings t and t^{\prime} have the same core, and so t is also a quasipolarization.

Conversely, assume that t is a quasipolarization of G. Suppose, without loss of generality, that G has no positive pole. Let $\left\{w_{1}, w_{2}, \ldots, w_{z}\right\}$ be the set of zero vertices of G, which is, consequently, the vertex set of the positive graph of t. We extend t to a quasipolarization t^{\prime} of a graph G^{\prime} by adding zero elements to the (labeled) graph G. In particular, for each $i=1,2, \ldots, z$, we add b^{i} new vertices and join each of these to w_{i}, where b is a fixed integer satisfying the inequality

$$
b \geq \max \{2,2|G|-z\} .
$$

Denote the resulting graph by G^{\prime}. The $\sum_{i=1}^{z} b^{i}$ newly added vertices and $\sum_{i=1}^{z} b^{i}$ new edges are labeled 0 , resulting in a transitional labeling t^{\prime} of G^{\prime} that is an extension of t.

We claim that t^{\prime} is of maximum linkage. Let G_{1} and G_{2} be graphs isomorphic to the negative and positive graphs of t^{\prime}. Then the order of G_{2} is

$$
z^{\prime}=z+\sum_{i=1}^{z} b^{i}
$$

Thus, the order of G_{1} is at least z^{\prime}. Let L be the linking graph of t^{\prime}. The claim is verified by showing that for each one-to-one function $f: V\left(G_{2}\right) \rightarrow V\left(G_{1}\right)$, we have $|F| \leq|L|$, where F is the linking graph of the quasipolarization s of the graph $G^{\prime \prime}$ that is associated with f, which then proves that L is a maximum common subgraph of G_{1} and G_{2}.

Let $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{z}, v_{z+1}, \ldots, v_{z^{\prime}}\right\}$, where the vertex $v_{i}(1 \leq i \leq z)$ corresponds to w_{i}, and where the vertices $v_{z+1}, v_{z+2}, \ldots, v_{z^{\prime}}$ are those end-vertices that were added to G to obtain G^{\prime}. Thus, for $i=1,2, \ldots, z$,

$$
\operatorname{deg} v_{i}=b^{i}+\operatorname{deg}_{G} w_{i} .
$$

Let $f\left(v_{i}\right)=u_{i}$ for $i=1,2, \ldots, z^{\prime}$. Denote the vertices of G_{1} corresponding to $w_{1}, w_{2}, \ldots, w_{z}$ by $x_{1}, x_{2}, \ldots, x_{z}$. The remainder of the proof is divided into two cases.

Case 1. Assume $u_{j} \neq x_{j}$ for some $j(1 \leq j \leq z)$. We know that

$$
\operatorname{deg} v_{j}=b^{i}+\operatorname{deg}_{G} w_{j}
$$

There are now two possibilities to consider, namely, $u_{j} \neq x_{i}$ for all $i(1 \leq i \leq z)$ and $u_{j}=x_{k}$ for some $k \neq j(1 \leq k \leq z)$.

If $u_{j} \neq x_{i}$ for all $i(1 \leq i \leq z)$, then
$\operatorname{deg} u_{j} \leq|G|-1$,
since, in constructing t^{\prime}, we have only modified the degrees of the zero vertices of G. On the other hand, if $u_{j}=x_{k}$ for some $k \neq j(1 \leq k \leq z)$, then

$$
\operatorname{deg} u_{j}=\operatorname{deg} x_{k}=b^{k}+\operatorname{deg}_{G} w_{k} .
$$

In either case, it follows that

$$
\left|\operatorname{deg} u_{j}-\operatorname{deg} v_{j}\right| \geq b-|G|+1
$$

Therefore, at least $b-|G|+1$ edges of $G^{\prime \prime}$ have a nonzero label, so

$$
|F| \leq\left|G^{\prime \prime}\right|-(b-|G|+1) .
$$

However,
so

$$
\left|G^{\prime \prime}\right|=|G|+2 \sum_{i=1}^{z} b^{i}
$$

$$
|F| \leq|G|+2 \sum_{i=1}^{2} b^{i}-(b-|G|+1) \leq z+2 \sum_{i=1}^{z} b^{i}-1-(b-2|G|+z) .
$$

According to the definition of b,

$$
b-2|G|+z \geq 0,
$$

so

$$
|F|<z+2 \sum_{i=1}^{z} b^{i} \leq|L| .
$$

Case 2. Assume $u_{i}=x_{i}$ for all $i(1 \leq i \leq z)$. Here, it follows in a straightforward manner that $|F| \leq|L|$.

Therefore, L is a maximum common subgraph of G_{1} and G_{2} and, hence, t^{\prime} is a transitional labeling of G^{\prime} of maximum linkage. Since t^{\prime} is an extension of t, the labeling t is a transform.

We close by illustrating the construction described in the proof of theorem 6. Figure 22 shows a graph G and a transitional labeling t of G. In this case, there are two zero vertices, so $z=2$. The integer b satisfies the inequality

$$
b \geq \max \{2,2|G|-z\}=\max \{2,8\}=8
$$

Fig. 22. Construction of an extension of a transitional labeling that is of maximum linkage.
here. Choosing $b=8$, we construct the graph G^{\prime} shown in fig. 22, with the resulting transitional labeling t^{\prime}.

References

[1] M.A. Johnson, in: Graph Theory, Combinatorics, and Applications, ed. Y. Alavi, G. Chartrand, O.R. Oellermann and A.J. Schwenk (Wiley, New York, 1991) pp. 725-738.
[2] M.A. Johnson, E. Gifford and C.-C. Tsai, in: Concepts and Applications of Molecular Similarity, ed. M.A. Johnson and G.M. Maggiora (Wiley, New York, 1991) pp. 289-320.
[3] V. Kvasnička and J. Pospichal, J. Mol. Struct. 227(1989)17.
[4] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd. Ed. (Wadsworth and Brooks/Cole, Monterey, 1986).
[5] A.T. Balaban, D. Farcsiu and R. Bănică, Rev. Roum. Chim. 1(1966)1025-1027.
[6] H. Hevia, Transitional values of graphs, submitted.
[7] H. Hevia, On the transitional value of a tree, submitted.
[8] M.A. Johnson, in: Graph Theory and its Applications to Algorithms and Computer Science, ed. Y. Alavi, G. Chartrand, L. Lesniak, D.R. Lick and C.E. Wall (Wiley, New York, 1985) pp. 457-470.

[^0]: *Research supported in part by Office of Naval Research Contract N00014-91-J-1060.

