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A transitional labeling of a graph G is an assignment of one of the elements of 
the set {1, -1 ,  0} to each vertex and edge of G so that each edge labeled 0 is incident 
only with vertices labeled 0, and no edge labeled 1 (respectively, -1 )  is incident with 
a vertex labeled -1  (respectively, 1). Chemical transformations can be represented by 
graphs possessing a transitional labeling. The positive (negative) graph of a transitional 
labeling t of a graph G is the subgraph of G consisting of the nonnegative (nonpositive) 
elements of G. The linking graph of t is the subgraph consisting of the zero elements 
of G. A maximum common subgraph of two given graphs G 1 and G 2 is a graph F 
isomorphic to a common subgraph of G 1 and G 2 such that the sum of the number of 
vertices and number of edges of F is maximum. A transitional labeling t of a graph G 
is a transform if there exists an extension t" of t to a supergraph G" of G such that the 
linking graph of t '  is a maximum common subgraph of the positive and negative graphs 
of t ' .  Transforms are used to model chemical reaction pathways. Transforms and related 
concepts are studied in this paper. A characterization of transforms is also given. 

1. Introduction 

Graph-theoretic models of transformation pathways were introduced in 
ref. [1], and chemical examples of these models were developed in ref. [2]. It is the 
goal of this paper to develop these models from another, purely graph-theoretic 
point of view and to present some theoretical results which are inherited by all 
chemical interpretations of these general models. 
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These formal models require a rigorously defined concept of  a transformation 
that distinguishes those structural features that are changed in the transformation 
from those that are not. Here, this concept is called a transitional labeling. The type 
of  transitional labeling in which we will be most interested is the transform. A 
major goal is to present a characterization of  transforms, which we will do in 
section 5. A concept that is comparable to the transitional labeling can be found in 
Kvasni~ka and Pospfchal 's graph-theoretic formulation of the Dugundj i -Ugi  theory 
of  organic reactions (ref. [3] and references cited therein). Whereas our definition 
associates the labels -1 ,  0, 1 with the vertices and the edges of  a graph, theirs 
associates the labels 0, +1, +2 . . . .  with solely the edges of  a graph. Because of  
their interest in stoichiometric reactions, they require that the edge labels sum to 
zero. We currently place no stoichiometric constraints on our labels. As a consequence, 
our formalism extends to non-stoichiometric representations of  reactions as are 
found in metabolic studies, as well as to representations of  structural transformations 
in which the edges of  a graph need not correspond to chemical bonds. 

2. Transitional labelings of graphs 

A labeling of  a graph G is an assignment of an element of a given set to each 
vertex and edge of G. A labeling t of  G with elements of  the set {1 , -1 ,  0} is called 
a transitional labeling if  

(1) each edge labeled 0 is incident only with vertices labeled 0, 

(2) no edge labeled 1 is incident with a vertex labeled -1 ,  and 

(3) no edge labeled -1  is incident with a vertex labeled 1. 

An edge or vertex is called positive, negative, or zero, according to whether 
it is labeled 1, - 1, or 0, respectively. The subgraph P of  G consisting of  the positive 
and zero elements of  G is called the positive graph of  t, while the subgraph N 
consisting of  the negative and zero elements is the negative graph of  t. The subgraph 
L of  G consisting of  its zero elements is called the linking graph of  t. Not all o f  
these subgraphs may exist for a transitional labeling of  a graph. Figure 1 shows a 
transitional labeling of  a graph H, together with its positive, negative, and linking 
graphs. The positive edges of  a graph are represented by solid lines, the negative 
edges by dashed lines, and the zero edges by dotted lines. For graph theory terminology 
not defined here, we follow Chartrand and Lesniak [4]. 

For a connected graph G and a transitional labeling t of  G, a vertex v of  G 
is called a pole (with respect to t) is v is not labeled 0. If v is labeled 1, it is a 
positive pole, while if v is labeled - 1, it is a negative pole. For example, the vertex 
g of  the graph H of  fig. 1 is a positive pole, and d is a negative pole. 

If G has both positive and negative poles, then t is a polarization; otherwise, 
t is a quasipolarization. The transitional labeling t of  the graph H of  fig. 1 is 
therefore a polarization. Since a positive pole cannot be adjacent to a negative pole, 
every transitional labeling of  a nontrivial complete graph is a quasipolarization. 
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Fig. 1. A transitional labeling of a graph H and 
its resulting positive, negative, and linking graphs. 
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Transitional labelings were introduced by Johnson [1] for the purpose of 
representing chemical transformations. For example, common salt (NaC1) may be 
formed by reacting metallic sodium directly with hydrochloric acid. This reaction 
has the chemical equation 

2Na + 2HC1 ---) 2NaC1 + H2. (1) 

The (labeled) chemical graph N that represents the two sodium atoms and two 
molecules of hydrochloric acid is shown in fig. 2, as is the chemical graph P that 
represents two molecules of sodium chloride and one molecule of H 2. We may think 
of N as representing chemical compounds prior to the transformation (1), and P the 
resulting compounds following this transformation. 

Na CI H Na CI H 
O O O O O O 

N: P: 

O O O O O O 
Na CI H Na CI H 

Fig. 2. A graphical representation of the 
compounds in the chemical transformation (1). 

The chemical transformations given by (1) may be interpreted as a process 
of  deletion and addition of certain vertices and edges in the graph N to produce the 
graph P. Consider the common supergraph G of N and P shown in fig. 3. We now 
label the vertices and edges 
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Fig. 3. A graphical representation of the chemical txansformation (1). 

(i) of G that are common elements of N and P by 0, 

(ii) of N that are deleted from N to produce P by -1 ,  and 

(iii) of P that are added to N to produce P by 1. 

The labeled graph G so obtained is a graph-theoretic representation of the 
chemical transformation given by (1), which is also shown in fig. 3. 

As a second exmple, the hydrocarbon ethylene C2H4 is a product of the 
breakdown of larger hydrocarbon molecules during petroleum refining. For example, 
ethylene and water react under suitable chemical conditions, producing (diethyl)ether 
(C2HsOC2Hs). This reaction can be represented by the chemical equation 

2C2H4 + H20 ~ C2HsOC2Hs. (2) 

Depending on the amount of water that reacts with the ethylene, ethanol 
(C2HsOH) may be formed, rather than ether. The reaction with water can take place 
in two stages, namely, (2) and 

C2HsOC2Hs + H20 ---) 2C2HsOH. (3) 

These two consecutive chemical transformations can be represented by a "transformation 
digraph" in which the vertices represent chemical compounds and the arcs represent 
chemical transformations involving these compounds. The first transformation digraphs 
were proposed by Balaban et al. [5] in 1966. For example, if C1 ---) C2 and C2 ---) C3 
symbolize the chemical equations (2) and (3), then the transformation digraph of 
fig. 4 represents the chemical process that takes place when ethylene and water 

G l G3 

L /  
G2 

Fig. 4. A chemical u'ansformation digraph. 
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react to produce ethanol. In fig. 4, G1, G2, and G3 represent the chemical graphs 
of  the compounds C1, C2, and C3, respectively. Systems of chemical compounds 
and transformations such as the one described by (2) and (3) are called chemical 
reaction pathways. To simplify the modeling of chemical reaction pathways, we 
may assume that chemical compounds are represented by unlabeled graphs. Thus, 
the vertices of the corresponding transformation digraph can be labeled by unlabeled 
graphs. 

We return to the chemical transformation described by (2). Figure 5 shows 
a (labeled) chemical graph N that represents two molecules of ethylene and one 
molecule of  water, and the chemical graph P that represents one molecule of ether. 
Although the bonds between carbon atoms are different in ethylene and ether, we 
represent them in the same way for simplification. 
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Fig. 5. A graphical representation of the 
compounds in the chemical transformation (2). 
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Fig. 6. A graphical representation of the chemical transformation (2). 

In order to represent the chemical transformation (2), we consider the common 
(labeled) supergraph G of N and P shown in fig. 6. Proceeding as before, we obtain 
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the labeling of  G (also shown in fig. 6), which is then a representation of  the 
chemical transformation (2). 

In certain representations of a chemical transformation (called nonstoichiometric 
transformations), some atoms on one side of the transformation may not be explicitly 
represented on the other side of the equation. Consequently, under the assumption 
that atoms from molecules of water do not participate in the atomic balance of the 
corresponding chemical equation, we obtain a different model for this chemical 
reaction between ethylene and water. In this case, we have 

2C2H4 ---> C2HsOC2H5. (4) 

Here, we obtain the chemical graphs N' and P '  of fig. 7. With the aid of the 
common supergraph G' of N' and P',  we obtain the labeling of G' shown in fig. 6. 
This labeling may be considered as a representation of the chemical reaction (4). 
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Fig. 7. A common supergraph of  two chemical graphs. 

It should now be clear that if G is a labeled graph representing a certain 
chemical transformation as described above, then edges labeled 0 are incident only 
with vertices labeled 0. Moreover, since additional edges cannot be incident with 
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deleted edges, and deleted edges cannot be incident with added vertices, we see that 
no edge labeled -1  is incident with a vertex labeled 1, and no edge labeled 1 is 
incdent with a vertex labeled - 1. Therefore, the labeling of G is, in fact, a transitional 
labeling. Denote this labeling by t. 

We note that the subgraph of G consisting of the elements labeled -1  or 0 
and the subgraph consisting of the elements labeled 1 or 0 are well defined. These 
subgraphs are, respectively, the chemical graphs of the involved compounds prior 
to and following the chemical transformation under consideration. Furthermore, 
these are, respectively, the negative graph N and the positive graph P of t. 

Hevia [6,7] has studied theoretical properties of transitional labelings. In 
particular, he has investigated transitional labelings of complete graphs and trees. 
Unless stated otherwise, we shall assume that all transitional labelings under discussion 
are nonconstant. There is no loss of generality with this assumption since transitional 
labelings were introduced to model chemical transformations, and a constant transitional 
labeling indicates that no chemical change has occurred. 

Let G~ and G2 be two graphs with transitional labelings tl and t2, respectively. 
We say that tl is isomorphic to t2, written t~ ___- t2, if there exists a graph isomorphism 
@ from V(G~) to V(G2) such that the diagram of fig. 8 is commutative, that is, 

t 1 = t 2 o ~ ,  

where ~ :  V(G1) u E(G1) ---) V(G2) u E(G2) is an extension of ~ for which ~ (uv)  
= Ou Ov, for each edge uv  of G1. Since @ is an isomorphism, it follows that @u Ov 
is an edge of G2 whenever uv is an edge of G~. This shows that the extension @ 
of @ always exists. 

V(G1) ~ E(GI) ~ V(G 2) w E(G2) 

{I,o,-i} 

Fig. 8. The commutative diagram 
for isomorphic transitional labelings. 

Figure 9 shows two graphs Gl and G2, with corresponding transitional labelings 
h and t2.. If ~: V(Gz) --) V(G2) is the isomorphism defined by dP(ui) = 19i (i = 1, 2, 3, 4), 
then h = t2 ° @ and, hence, tl -= rE. It can be shown that the relation "is isomorphic 
to" is an equivalence relation of any set of transitional labelings. 
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Fig. 9. Isomorphic transitional labelings. 

Let t be a nontrivial transitional labeling of  a graph G. The core tc of  t is the 
restriction of  t to the subgraph obtained from G by deleting all zero edges together 
with all zero vertices that are incident only with zero edges. Equivalently, the core 
tc of  G is the restriction of  t to the subgraph H of  G induced by the nonzero edges 
of  G and the isolated vertices of  G that are poles. Figure 10 shows a transitional 
labeling t o f  a graph together with its core to. 

- I  - I  
0 0 

1 0 1 1 0 1 
t: O Cr ............ O tc: O O O 

0 0 - I  0 - I  
0 ................. 0 - - - - - - - 0  0 - - - - - - - < 3  

Fig. 10. The core of a transitional labeling. 

At this point, we interrupt our discussion briefly to recall a few ideas from 
the mathematical theory of  relations. A relation- on a set S is a collection of  
elements (ordered pairs) of  the product set S x S. For any x, y ~ S, it is customary 
to write x N y if  and only if (x, y) belongs to the relation - and we say x is related 
to y by - .  The relation is called (1) reflexive if x - x  for all x ~ S ,  (2) symmetric 
if  whenever x - y, then y ~ x, (3) antisymmetric if whenever  x - y and y ~ x, then 
x = y, and (4) transitive if whenever x ~ y  and y ~ z, then x ~ z. A relation that 
satisfies the reflexive, symmetric, and transitive properties is referred to as an 
equivalence relation. 

If a relation ~ on a set S is reflexive, antisymmetric, and transitive, then it 
is called a partial ordering on S, and we say that ~ partially orders S. It is customary 
to denote a partial ordering by _<. A set S together with a partial ordering on S is 
called a partially ordered set or, more commonly,  a poset. With each poset, there 
is associated a diagram called a Hasse diagram. For each element of  the poset, we 
associate a point. If  x and y belong to the poset  and x _< y, then we draw the point 
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diagram of  a set o f  transitional labelings.  

corresponding to x below the point corresponding to y. Furthermore, if x < y and 
there is no element z of  the poset distinct from x and y such that x < z < y, then we 
join x and y by a line segment. 

We now retum to our primary discussion. Let t and t" be transitional labelings 
of  graphs G and G', respectively. They are said to have the same core if  - ' tc = te. (This 
relation is an equivalence relation on any set o f  transitional labelings.) Let t and t' 
be transitional labelings having the same core. Then we write t < t' if t is isomorphic 
to a restriction of  t'. Thus, t < t' if and only if a transitional labeling isomorphic to 
t" can be constructed from t by adding appropriate zero elements to G. Note that, by 
definition, if t < t', then te = t~. If t < t', then t is called a restr ict ion of  t', and t' is 
an extension of  r If t < t '  and t ~ t',  then t' is a proper  extension of  t. 

The relation _< partially orders any set 'Tof transitional labelings. Certainly, 
< is reflexive and transitive. To see that < is also antisymmetric, suppose that t 
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and t '  are transitional labelings of graphs G and G', respectively, such that t < t '  
and t" < t. Then t and t '  must have an equal number of zero elements and, consequently, 
t == _ t'. 

For example, let '/ 'be the set of transitional labelings t~, t2 . . . . .  t 9 shown in 
fig. 1 1. These transitional labelings have isomorphic cores. Thus, ( ~  <) is a poset 
and may be represented by the Hasse diagram of fig. 11. The transitional labelings 
shown in fig. 11 will be referred to often throughout the remainder of this paper. 

3. Transforms 

In this section, we describe a secial kind of transitional labeling called a 
transform, in which we will be interested throughout the remainder of the paper. 
It is necessary to define a few additional terms before introducing this concept. 

We define the cardinality IGI of a graph G as the sum of its order and size, 
that is, 

IGI = IV(G)l + IE(G)I. 

A graph F is called a maximum common subgraph of graphs G1 and G2 if F is a 
graph of maximum cardinality that is isomorphic to a common subgraph of G1 and 
G2. A graph G is a minimum common supergraph of G1 and G2 if G is a graph of 
minimum cardinality that is isomorphic to a common supergraph of G1 and G2. 
These two concepts were introduced by Johnson in ref. [8]. For the graphs G1 and 
G2 of fig. 12, IGll = 10 and IG2I = 9. The graph F is the unique maximum common 
subgraph of G1 and G2, and G is a minimum common supergraph (though not 
unique) of G1 and G2. 

O ~  

F: G: 

O 

Fig. 12. A maximum common subgraph and 
mirtimum corrlmon supergraph of two graphs. 

For subgraphs HI and H 2 of a (labeled) graph G, we define the union H1 u 112 
as that subgraph of G with vertex set V(H1) u V(H2) and edge E(H1) u E(H2). The 
intersection H1 n H2 of HI and H 2 is defined analogously. 
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Fig. 13. The construction of a transitional labeling 
with prescribed negative and positive graphs. 

Let G 1 and G 2 be two given graphs. In ref. [1], Johnson shows how to 
construct a graph G and a transitional labeling t of  G such that the negative graph 
of t is isomorphic to G1 and the positive graph of t is isomorphic to G 2. We briefly 
describe this procedure. Let G' be a common supergraph of  G1 and G 2. Let H 1 and 
HE be two subgraphs of G' that are isomorphic to G1 and G 2, respectively. Define 
a transitional labeling t of G = H 1 kd H E by 
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t xl  i 
i fx is an dement  o fH  1 but not of H 2, 

i fx is an element o fH  2 but not of H 1, 

i fx is a common element o fH  1 and H E. 

(5) 

We illustrate this procedure. Let G1 and G 2 be the two graphs shown in 
fig. 13. Choose the common supergraph G" of Gi and G 2 and the subgraphs HI and 
H2 of G '  of fig. 13. We then obtain the transitional leveling t of G = H 1 k3 H E shown 
in fig. 13. 

For given graphs GI and G2, let G be a minimum common supergraph of G1 
and G 2 and let H i denote a subgraph of G isomorphic to G i, i = 1, 2. Then 

IGI= IH, I + IH21-1FI 

and so 

IGI = IG,I + IG21-IFI,  (6) 

where F = H1 c~ H 2. Thus, F is a common subgraph of G1 and G 2. From eq. (6), it 
foUows that F is a maximum common subgraph of GI and G2. Therefore, in constructing 
the transitional labeling t described in (5), if we choose G '  as a minimum common 
supergraph of G1 and G2, then the linking graph of t is a maximum common 
subgraph of GI and G 2. Figure 14 shows a transitional labeling s whose negative 
and positive graphs are isomorphic to the graphs G1 and G 2 o f  f ig .  13, respectively, 
and where the linking graph of s is a maximum common subgraph of G 1 and G 2. 

0 0 
• • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - ( ~  

o -  . . . . . . .  - ;  . . . . . . . . . . . . . . . . .  

-1 0 0 

Fig. 14. The construction of a transitional labeling 
with prescribed negative and positive graphs and 
whose linking graph is a maximum common subgraph. 

A transitional labeling t is said to be of maximum linkage if its linking graph 
is a maximum common subgraph of the positive and negative graphs of t. Thus, the 
transitional labeling shown in fig. 14 is of  maximum linkage. 

A characteristic of  transitional labelings of maximum linkage is now 
established. 
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THEOREM 1 

If t is a transitional labeling of maximum linkage of a graph G, then t is a 
quasipolarization of G. 

Proof 

Let N and P be the negative and positive graphs of t, respectively. Since t 
is of maximum linkage, G is a minimum common supergraph of N and P. Suppose, 
to the contrary, that t is a polarization. Let u and v be poles with distinct signs. Let 
H be the graph obtained by identifying u and v. Then H is a common supergraph 
of N and P whose cardinality is less than the cardinality of G, contradicting the 
minimality of G. [] 

The converse of theorem 1 is not true in general, as is illustrated by the 
quasipolarization shown in fig. 15. 

0 0 
0 0 

0 0 
0 0 

Fig. 15. A quasipolarization that is not a 
transitional labeling of maximum linkage. 

A transitional labeling t is called a transform if there exists an extension t' 
of t that is of maximum linkage, that is, the linking graph t" is a maximum common 
subgraph of the negative and positive graphs of t'. Thus, every transitional labeling 
of maximum linkage is a transform. Transforms were introduced by Johnson [1] for 
the purpose of modeling chemical reaction pathways. 

We return to the example given in fig. 11. Figure 16 shows the transitional 
labelings tl and t3 of fig. 11, together with their corresponding negative and positive 
graphs. Since the linking graph of t3 is a maximum common subgraph of the 
negative graph N3 and positive graph /'3 of t3, it follows that t3 is of maximum 
linkage. The linking graph of h is not a maximum common subgraph of the negative 
graph N1 and the positive graph P1 of h,  so tl is not of maximum linkage. However, 
because t3 is of maximum linkage and tl < t3, it follows that tl and, of course, t3 
are transforms. 

Now consider the transitional labeling t of the graph G shown in fig. 17, with 
linking graph L, negative graph N, and positive graph P. Observe that L = KI and 
N _=_ P =/('2. Let s be an extension of t, with linking graph L', negative graph N*, 
and positive graph P*. Since s is obtained from t by adding zero edges and/or zero 
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Fig. 16. Transitional labelings that are transforms. 

O . . . . . .  -(3 O 
-1 0 i 

Fig. 17. A transitional labeling that is not a transform. 

vertices to t, it follows that N* P* L* and is a proper subgraph of N* (equivalently 
P*). Because N* = P*, the maximum common subgraph of N* and P* is also isomorphic 
to N*. Hence, L* is not a maximum common subgraph of N* and P*, so t is not a 
transform. 

4. Actions, transform kits, and metadigraphs 

Let t be a transform. An ordered pair (G1, G2) of (unlabeled) graphs is called 
an action of t if there exists an extension t '  of maximum linkage of t such that the 
negative graph of t '  is isomorphic to G1 and the positive graph of t '  is isomorphic 
to G2. Equivalently, then, (N, P) is an action of t if t is of maximum linkage with 
negative graph N and positive graph P. For example, for the graphs N 3 and P3 of 
fig. 16, the ordered pair (N3, P3) is an action of the transforms tl and t3. 

A metadigraph M = (D, g) is a (possibly infinite) digraph D together with a 
labeling g of the vertices of D with unlabeled graphs such that if u, v e V(D), u ~ v, 
then g(u) ~ g(v).  Figure 18 shows a metadigraph M of order 3 whose vertices are 
labeled with the graphs G1, G2, and G 3. Two metadigraphs M 1 = (D1 ,  g l )  and M2 
= (D2, g2) are isomorphic if there exists an isomorphism 4: V(D1) ---> V(D2) such 
that gl(u) =- gz(¢(u)) for all u e V(D1). 

A transform kit K is an ordered pair (Tg, Tb) of sets of transforms. The 
elements of Tg are called the generating transforms of K and the elements of Tb are 
referred to as blocking transforms of K. Let K = (Tg, Tb) be a transform kit, and let 
t E Tg and t '  ~ Tb. An action (G1, G2) of t is said to be blocked by t" if 

(i) (Gb G2) is an action of t', and 

(ii) t < t', that is, t' is an extension of r 
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M: 0 ~ G 3 

Fig. 18. A metadigraph. 

We return to the transitional labelings shown in fig. 11. Consider the transform 
k i t K =  (Tg, Tb), where Tg= {h} and Tb = {t3}. We have seen that al = (N3, P3) is an 
action of  tl and t3, where N3 and/ '3 are the graphs shown in fig. 16. Since t 1 _.< t 3, 
the action al of  tl is blocked by t3. Let N8 and P8 denote the negative and positive 
graphs of  the transitional labeling t8 of fig. 11 (see fig. 19). We claim that a 2 = (N 8, Ps) 

t3: 
0 0 0 0 
o -  . . . .  O ~ s : ~  . . . .  9 

I /  ' O.t, 1 I 
• O O - - - - O  . . . . . . . . .  O 

0 0 0 0 0 

N3: 

Fig. 19. An action (N 8, Ps) of  t 1 is not blocked by t 3. 

O 

is an action of  tl that is not blocked by t3. In order to see this, we assume, to the 
contrary, that a2 is blocked by t3. Then a2 is an action of  t 3. So, there exists some 
extension of t 3 whose negative graph N is isomorphic to N8. Since the negative 
graph/73 of  t 3 is a subgraph of  N, the graph N s contains a triangle, which produces 
a contradiction. Let T~= {t2}. Then for the transform kit K ' =  (Tg, Tff), the actions 
al and a2 of  tl are blocked by the transform t2. 

By an action of  a transform kit K, we mean an action of  the generating 
transforms of  K that is not blocked by any blocking transform of  K. Thus, for the 
transform ki tK = (Tg, Tb) described above in which Tg = {tl} and T b = {t3}, a2 = (N8, Ps) 
is an action of  K. 
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Let A be a nonempty set of unlabeled graphs, and let K be a transform kit. 
With A and K, we can associate a metadigraph D(A, K). Each vertex of D(A, K) 
corresponds to an element (unlabeled graph) of A. Let u and ~ be distinct vertices 
of  D(A, K) with corresponding graphs GI and G2, respectively. Then (u, t0 is an arc 
of D(A, K) if and only if (GI, G2) is an action of K. 

G1 : V G2: G3: V 

S" 

-1 0 -1 0 

r: Q / r': Q ,  1/..~ 

o v  o 9 I  t i 
i 6 . /  

o 9 o i  ! : 
o o 
o o 

0 0 0 0 0 0 

o I / o 

0 0 0 

K = ({r, s}, {t}) A = {Ol, O2, G3} 

D (A K): 

G 1 G 2 G 3 
0 I~' 0 I~, 0 

Fig. 20. Actions, a transform kit, and a metadigraph. 

As an example, let A = {G1, G2, G3} and K = ({r, t}, {s}), where the graphs 
G1, G2, G3 and transitional labelings r, s, t are shown in fig. 20. The extension r '  
and r shown in fig. 20 is of maximum linkage, and the negative and positive graphs 
of  r '  are isomorphic to G1 and G2, respectively. Therefore, (G1, G2) is an action of  
r that cannot be blocked by t since r and t have distinct cores. Then (Gl, G2) is an 
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action of  K. On the other hand, if (G1, G2) is an action of  a certain transform u of  
a graph G, then G must have a positive pole. This implies that such a transform u 
cannot be an extension of r or of s. Therefore, (G1, G2) is neither an action of  r nor 
of  s and, consequently, is not an action of K. That (G2, G3) and (G3, G2) are actions 
of  s can be seen by considering the extension s '  and s" (of maximum linkage), 
respectively. In particular, since t = s"  is a blocking transform of  K, the action 
(G3, G2) is blocked by t. Thus, (G3, G2) is not an action of  K. The action (G2, G3) 
of  s cannot be blocked by t since the negative graph N of  any extension of t contains 
a 4-cycle and so G2 ~ N. Therefore, (G2, G3) is an action of  K. 

The graphs G1 and G3 have a unique maximum common subgraph, namely, 
/4. So, if t" is a transitional labeling of maximum linkage whose negative and 
positive graphs are isomorphic to G1 and G3, or to G3 and G1, respectively, then 
t* has a core distinct from that of r and s. From this, it follows that (G1, G3) and 
(G3, Gl) are not actions of r and s and, consequently, are not actions of K. The 
remaining metadigraph is shown in fig. 20. 

Let M be a metadigraph. If there exists a set A of unlabeled graphs and a 
transform kit K such that M is isomorphic to the metadigraph D(A, K), then (A, K) 
is said to be a specification for M. 

Recall that a transitional labeling t of maximum linkage is a transform. Also, 
if N and P are the negative and positive graphs of t, then (N, P) is an action of t. 
The next result concems this situation. 

THEOREM 2 

Let t be a transitional labeling of maximum linkage in a graph G, and let N 
and P denote the negative and positive graphs of t. Then there exists no transform 
t" that is a proper extension of t such that (N, P) is an action of t'. 

Proof 
Suppose, to the contrary, that there exists a transform t" that is a proper 

extension of t such that (N, P) is an action of t'. Since (N, P) is an action of  t ' , there 
exists a transitional labeling of  t" of some graph G" that is of maximum linkage 
and whose negative and positive graphs are isomorphic to N and P. Thus, G and 
G" are minimum common supergraphs of N and P, and, consequently, IGI = IG"I. 
However, t" is  a proper extension of t so that IGI<IG"I ,  producing acontra- 
diction. [] 

An immediate consequence now follows. 

COROLLARY 3 

If K = (Tg, Tb) is a transform kit and t ~Tg\Tb is of  maximum linkage, 
then (N, P) is an action of K, where N and P are the negative and positive graphs 
of  t. 
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Proof 

Since t ~ Tg\Tb, any extension t" of t in Tb is a proper extension of  t. By 
theorem 2, (N, P)  is not an action of  t '  for any t" ~ Tb. Therefore, (N, P)  is an action 
of  K. [] 

Let G1 and G 2 be two given graphs. By 'T(G1, G2), we mean the set of all 
transitional labelings of  maximum linkage whose negative and positive graphs are 
isomorphic to G1 and G2, respectively. For example, if G1 and G2 are the graphs 
of  fig. 20 (also shown in fig. 21), then 'T(G1, G2) = {tl, t2}, where tl and t2 are the 
transitional labelings shown in fig. 21. 

G 1 : y G2: 

Y 
-I 0 -1 0 

tl: Q ~ t2: Q i NO ! \ X / / /  \ \ / /  

! /  
0 0  .... 

' I 
! 
! 

o o 
o o 

Fig. 21. The transitional labelings of maximum linkage whose 
negative and positive graphs are isomorphic to G l and G 2. 

THEOREM 4 

Let K = (Tg, Tb) be a transform kit. If G1 and G2 are graphs for which 
q'(G1, G2) c Tb, then (G1, G2) is not an action of  K. 

Proof  

Suppose that (G~, G2) is an action of  some transform t 6 Tg. Then there exists 
a transitional labeling t '  of  maximum linkage such that t < t '  and the negative and 
positive graphs of  t '  are isomorphic to G1 and G2. Since (G1, G2) is an action of  
t '  and t '  E T(G1, G2) ___ Tb, the action (G1, G2) is blocked by t ' .  Thus,  (G1, G2) is 
not an action of  K. [] 



G. Chartrand et al., Chemical transformations represented by labeled graphs 77 

We are now in a position to establish the existence of  a specification (A, K) 
for any given metadigraph M. This result is due to Johnson [1], but we include a 
proof for completeness. 

THEOREM 5 (Johnson) 

For any metadigraph M, there exists a specification (A, K) such that M is 
isomorphic to D(A, K). 

Proof 
Let M =  (D, g) be a metadigraph. Let A = {g(v ) lv  E V(D)}. For each arc 

e = (u, v) of  D, construct a transitional labeling te of maximum linkage whose 
negative and positive graphs are isomorphic to g(u) and g(v), respectively. Let 

Tg = {t, le ~E(D)}  

and T b = Tg, where Tg is the complement of Tg with respect to the set of  all transforms. 
Let K = (Tg, Tb). We show that (A, K) is a specification for M. 

Suppose that e = (u, v) is an arc of D. Then the transform te is an element 
of  Tg\Tb. By corollary 3, (g(u), g(v)) is an action of  K, and so the vertex of  D(A, K) 
labeled g(u) is adjacent to the vertex labeled g(v). 

Next, suppose that e = (u, v) is not an arc of D. In this case, 'T(g(u), g(v)) c Tb. 
By theorem 4, (g(u), g(v)) is not an action of K, and so the vertex labeled g(u) in 
D(A, K) is not adjacent to the vertex labeled g(v). 

Therefore, the restriction g ' :  V(D) ---> A of  g is an isomorphism of M and 
D(A, K). [] 

5. A characterization of transforms 

Transforms have played a central role throughout this paper. In this section, 
we present a characterization of  transforms. 

Let GI and G2 be graphs with I V(G1) I > I V(G2) I = z, and let f :  V(G2) ---> V(G1) 
be a one-to-one function. Suppose that V(G2) = {vl, 192 . . . . .  l~z} andf(vi )  = ul for 
i = 1, 2 . . . . .  z. With f we can associate a quasipolarization for a graph G, a~ ~ we 
now describe. We construct a common supergraph G of  G1 and G2 by identifying 
ui and vl for each i (1 < i < z). Let H1 and H2 denote subgraphs of  G isomorphic 
to GI and G2, respectively. Then G = H1 u / / 2 .  Define the transitional labeling t of  
G as we did in (5), namely, 

t(x) = 

- i  i fx  is an element o f H  1 but not of  H2, 

i fx  is an element o f H  2 but not of  H l, 

i fx  is a common element o f H  1 and H 2. 
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Indeed, every quasipolarization with negative graph isomorphic to GI and positive 
graph isomorphic to G2 can be thought of  as being associated with a one-to-one 
function from V(G2) to V(G1). We employ these ideas in the proof of  the next result. 

THEOREM 6 

A transitional labeling t of  a graph G is a transform if and only if t is a 
quasipolarization. 

P r o o f  

Suppose, first, that t is a transform. Then there exists an extension t" of  t that 
is of  maximum linkage. By theorem 1, t '  is a quasipolarization. Since t < t ' ,  the 
transitional labelings t and t '  have the same core, and so t is also a quasipolarization. 

Conversely, assume that t is a quasipolarization of G. Suppose, without loss 
of  generality, that G has no positive pole. Let {wl, w2 . . . . .  w,} be the set of  zero 
vertices of  G, which is, consequently, the vertex set of  the positive graph of  t. We 
extend t to a quasipolarization t" of  a graph G '  by adding zero elements to the 
(labeled) graph G. In particular, for each i = 1, 2 . . . . .  z, we add b i new vertices and 
join each of these to wi, where b is a fixed integer satisfying the inequality 

b > max{2, 2 1 G I -  z}. 

Denote the resulting graph by G'. The Y~--1 bi newly added vertices and ~--1 bi new 
edges are labeled 0, resulting in a transitional labeling t '  of  G '  that is an extension 
of  t. 

We claim that t '  is of  maximum linkage. Let GI and G2 be graphs isomorphic 
to the negative and positive graphs of  t'. Then the order of G2 is 

z 

Z" = Z +~_~b i. 
i=1 

Thus, the order of  G1 is at least z'. Let L be the linking graph of  t'. The claim is 
verified by showing that for each one-to-one function f :  V(G2) ---> V(G~), we have 
IFI < ILl, where F is the linking graph of  the quasipolarization s of  the graph G" 
that is associated with f,  which then proves that L is a maximum common subgraph 
of GI and G2. 

Let V(G2) = {1) 1, 1) 2 . . . . .  1)z, 1)~+1 . . . . .  1)~,}, where the vertex 1)i (1 < i <  z) 
corresponds to wl, and where the vertices 1)~ ÷ 1, 1)~ +2 . . . . .  vz, are those end-vertices 
that were added to G to obtain G'. Thus, for i = 1, 2 . . . . .  z, 

deg vi = b i + degc wi. 

Let f ( v i )  = ui for i = 1, 2 . . . . .  z'. Denote the vertices of  G1 corresponding to 
Wl, w2 . . . . .  wz by xl, x2 . . . . .  xz. The remainder of  the proof is divided into two 
cases. 
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Case 1. Assume uy~xj  for s o m e j  (1 < j <  z). We know that 

deg vy = b i + dega wj. 

There are now two possibilities to consider, namely,  uj ~ xl for all i (1 _< i < z) and 
uj = xk for some k ~: j (1 < k < z). 

If  uj ~ xi for all i (1 < i < z), then 

deg u j<  I G I -  1, 

since, in constructing t ', we have only modified the degrees o f  the zero vertices of  
G. On the other hand, if uj = xk for some k g j  (1 < k < z), then 

deg uj = deg xk = b k + degc wk. 

In either case, it follows that 

Ideg u j -  deg vi i>  b - I G I  + 1. 

Therefore,  at least b - I G I  + 1 edges of  G"  have a nonzero label, so 

I F I - < I G " I - ( b - I G I  + 1). 

However,  
z 

IG"I=IGI+ 2~_,b i, 
i=1 

SO z z 

IFI < l G l + 2 ~ , b  i - ( b - I G l +  l) < z + 2 ~ , b  i - l - ( b -  21Gl+ z). 
i=1 i=1 

According to the definition of  b, 

SO 

b - 2 1 G l + z  >O, 

I f l  < z + 2 ~ . , b  i<- ILl. 
i=1 

Case 2. Assume ul = xi for all i (1 < i < z). Here, it follows in a straightforward 
manner  that IFI < ILl. 

Therefore,  L is a maximum common subgraph of  GI and G2 and, hence, t '  
is a transitional labeling of  G '  of  maximum linkage. Since t '  is an extension of  t, 
the labeling t is a transform. [] 

We close by illustrating the construction described in the proof  of  theorem 6. 
Figure 22 shows a graph G and a transitional labeling t of  G. In this case, there are 
two zero vertices, so z = 2. The integer b satisfies the inequality 

b > m a x { 2 , 2 1 G I - z }  = m a x { 2 ,  8} = 8 
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G: Wl w2 
0 ..... -0 0 

-1 0 0 

Oo e G': 
O \ \  i / O  Oo \ / 0  0 

° o.,~,,~,\_ ,,.,/~..,~..o o,.. ,,- 0 o.....::~0 ,/,.:..,o 0 
o -  . . . . . . . . . . . . . . . .  - ~ : "  S ~ + ' .  ..... Oo ...... /.."? .'~ < ....... 
-~ 0 0 o ...,..~(/!~.,. o0 

oo 

64 end-vertices 

Fig. 22. Construction of an extension of a 
transitional labeling that is of maximum linkage. 

here. Choosing b = 8, we construct the graph G' shown in fig. 22, with the resulting 
transitional labeling t'. 
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